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Purpose. To study the effect of synthesized N*,N°-dioleoyl spermine on DNA condensation and then
measure its transfection efficiency in cell culture.

Methods. The lipopolyamine was synthesized from the naturally occurring polyamine spermine. The
ability of this novel compound to condense DNA was studied using ethidium bromide fluorescence
quenching and light scattering assays. Transfection efficiency was studied in primary skin cells (FEK4)
and in an immortalized cancer cell line (HtTA), and compared with the commercially available
transfection formulations Lipofectin and Lipofectamine.

Results. The synthesized N*,N°-dioleoyl spermine formula is efficient at condensing calf thymus and
circular plasmid DNA and effectively transfects both primary skin cells and cancer cell lines at low
charge ratios of (+/— ammonium/phosphate) 2.5.

Conclusions. N*N°-Dioleoyl spermine condenses DNA and achieves high transfection levels in

cultured cells.

KEY WORDS: FEK4; gene delivery; lipopolyamine; N*,N°-dioleoyl spermine; transfection.

INTRODUCTION

It is widely believed that gene therapy will become an
efficient medicine for the treatment of diseases such as
cancer, cystic fibrosis and for vaccination. The essential
requirements for gene delivery are the transport of DNA
through the cell membrane and ultimately to the nucleus.
The design of an efficient formula for the delivery of genetic
material requires a detailed understanding of the mechanism
of gene delivery to the nucleus. Different strategies have
been used for the delivery of genetic material into target
cells, classified as viral or non-viral delivery systems (1-3).
Viral delivery systems depend on the development of
genetically-modified viruses to utilize their capability of
efficiently delivering DNA into cells without their pathogenic
characteristics (3). Although high efficiency is achieved by
viral vectors, there are concerns about their use which
include: a limit in the size of the DNA delivered (the
“payload”), endogenous viral recombination, unexpected
anti-vector immune response, and oncogene activation
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(4-7). Since the design and formulation of Lipofectin by
Felgner and co-workers, reported in 1987 (8), the focus on
nonviral vectors for DNA delivery has shown a remarkable
increase worldwide (9-15).

Efficient nonviral formulation should be able to deliver
safely the required DNA across the various cellular barriers
to the nucleus. These barriers that hinder the delivery of
DNA to its physical site of action (the nucleus) have been
summarized in Fig. 1. They include complex formation
between the DNA and cationic lipid or polymer that leads
to condensation of DNA into nanoparticles. Cell-membrane
entry is thought to be mediated by cationic substances, which
interact with the DNA payload, and can then cause
adsorptive endocytosis and internalization of the complex.
Also, the lipid moiety in cationic lipids interacts with the
phospholipid bilayer of the cell membrane that facilitates cell
entry. The internalized material is fused with early endo-
some. That leads to sorting to the late endosomal compart-
ment, at this stage the DNA complex should escape the
endosomal vesicle before the later stage of the lysosome
where the DNA will be degraded. After endosomal escape,
the DNA (either complexed or dissociated from the con-
densing agent) should find its way to the nucleus and cross
the nuclear membrane which is thought to occur through the
nuclear pore complex (NPC) or by direct association with the
chromatin during mitosis. After nuclear entry, the payload
DNA should successfully be able to give the desired protein
through the processes of transcription and translation.

For drug formulators, it is difficult to deliver a drug
molecule of 3.3 kDa molecular weight carrying 10 negative
charges, but in the case of the (prodrug) DNA, a 5 kbp
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plasmid has a molecular weight of about 3.3 megadaltons and
carries 10,000 negative charges. So the first key step in gene
formulation is DNA condensation into a nanoparticle form
through masking the negative charges of the phosphate
backbone which causes alleviation of charge repulsion
between remote phosphates on the DNA helix leading to
collapse into a more compact structure (2,16). The impor-
tance of DNA condensation is attributed to the correlation of
the transfection efficiency with the formation of DNA
nanoparticles that are essential for the delivery of DNA
through the cell membrane (16-20).

Cationic lipids are considered to be the major gene
carriers among the non-viral delivery systems. They have the
ability to condense DNA into particles that can be readily
endocytosed by cultured cells, and facilitate endosomal
escape leading to efficient delivery to the nucleus (21). They
can be classified as liposomal and non-liposomal nonviral
delivery vectors. Liposomal delivery vectors usually contain
two types of lipids, a cationic lipid (positively charged
amphiphile) for DNA condensation and cellular membrane
interaction, and a neutral helper lipid (phospholipid), most
use dioleoylphosphatidyl-ethanolamine (DOPE) (Fig. 2) to
increase transfection efficiency as it has a membrane fusion
promoting ability (8,22,23). Nonliposomal cationic-lipid de-
livery vectors combine both the characteristics of cationic
and helper lipids.

The synthesis of the lipopolyamine dioctadecylamido-
glycylspermine (DOGS) by Behr and co-workers (24) as a
promising transfecting agent, encouraged several laboratories
to focus on the synthesis of novel cationic lipids based on the
naturally occurring polyamine spermine, for example,
RPR120535 (25) and 1,3-dioleoyloxy-2-(6-carboxyspermine)
DOSPER (26) (Fig. 2). The design of a novel lipopolyamine
formula for DNA condensation and cellular delivery relies
on previous and continuing studies of the structure-activity
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Fig. 1. Steps in the process of nonviral gene therapy by endocytosis showing the barriers for DNA
nanoparticles, from the formation of the DNA-polycation complex (condensed DNA particles) to
protein synthesis.
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relationships of DNA binding and condensation by poly-
amines (16,27-30). Although lipopolyamines are less efficient
in comparison with viral vectors, their promising lower
toxicity than viral vectors ensures a continuous effort to
design novel lipopolyamines with improved transfection
efficiency. In this study, we synthesized and formulated a
novel lipospermine in which the tetra-amine spermine (the
cationic moiety) and dioleoyl chains (the lipophilic moiety)
that is reported to improve the transfection efficiency by
fusion with cellular membrane (31). These unsaturated chains
are linked by amide bonds at the secondary amino groups of
spermine to form N*N°-dioleoyl spermine (commercially
available as LipoGen) (32). These amide linkers have the
advantages of being both biodegradable and less toxic than
the ether bonds in DOTMA (33,34). The ability of this
synthetic lipopolyamine to condense DNA was studied using
ethidium bromide (EthBr) fluorescence quenching and light
scattering assays. Transfection efficiency was studied in an
immortalized cancer cell line (HtTA), and in primary skin
cells (FEK4) for the first time. The difficulties found in
efficiently transfecting primary cell lines were largely
overcome with this nonliposomal formulation comprising a
vector with two covalently bound oleoyl chains. The results
are compared with two commercially available (liposomal)
transfection formulations, Lipofectin® and Lipofectamine
that incorporate such oleoyl or oleyl (C18) chains.

MATERIALS AND METHODS
Materials

Chemicals, including polyamines spermine, polyethyle-
nimine (PEI), and poly-L-lysine (PLL), reagents, solvents,

buffers, and DNA were routinely purchased from Sigma-
Aldrich, UK, except where indicated. Lipofectin and Lipo-
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Fig. 2. Chemical structures of spermine, PEI, PLL, DOPE, DOTMA, and spermine based lipopolyamines.

fectamine reagents from Invitrogen (Life Technologies
Gibco BRL) and cell cultures materials from Life Technol-
ogies (Paisley, Scotland).

Synthesis of N*N°-Dioleoyl Spermine

Spermine was used as the starting material for the syn-
thesis process (35), outlined in Fig. 3. Spermine was protected
on the primary amino functional groups with ethyl trifluoro-
acetate (2.2 eq) in methanol and the reaction mixture was
stirred for 18 h at 25°C. The solvent was evaporated to
dryness in vacuo to form N' N'-ditrifluoroacetyl-1,12-
diamino-4,9-diazadodecane. Dicyclohexylcarbodiimide
(DCC, 2.5 eq), 1-hydroxybenzotriazole (HOBt, 0.2 eq) and
oleic acid (2.2 eq) were added to the diprotected spermine
solution in CH,Cl, and methanol (1:1). The solution was
stirred for 18 h at 25°C. The solvent was evaporated to

dryness in vacuo. The residue was dissolved in CH,Cl, and
the solution filtered and evaporated to dryness in vacuo to
form N*N 9-dioleoyl-Nl,le-ditrifluoroacetyl-1,12-dianmin0-
4,9-diazadodecane. For the removal of the di-trifluoroacetyl
groups, the tetra-amide was dissolved in methanol and the
pH of the solution was increased by saturating with ammonia
gas, then it was left (18 h) and evaporated to dryness in
vacuo to give a residue which was purified over silica gel
(CH,Cl,-MeOH 5:3 v/v, then CH,Cl,-MeOH-conc. aq. NH3
25:10:1 v/viv) to afford N*N°-dioleoyl spermine R; 0.3
(CH,Cl,-MeOH-conc. aq. NHj 25:10:1 v/v/v).

Amplification and Purification of Plasmid DNA (pEGFP)
DNA plasmid encoding enhanced green fluorescent

protein (pEGFP) purchased from Clontech was transformed
into Escherichia coli JM 109 bacterial strain (Promega). The
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Fig. 3. Synthesis of N* N°-dioleoyl spermine.

transformed cells were grown in larger quantities of Luria-
Bertani (LB) broth supplemented with 125 mg/L ampicillin.
pEGFP plasmid was produced in large-scale using HiSpeed
plasmid purification Maxi kit (Qiagen) according to the
manufacturers protocol. DNA vyields and purity were deter-
mined spectroscopically (ODyp/OD5gy = 1.80 to 1.90 OD,
optical density) and by agarose gel (1% agarose) analysis.

Ethidium Bromide Fluorescence Quenching Assay

Each concentration of the DNA stock solutions (ap-
proximately 1 pg/ul, 1 ml) was determined spectroscopically
(Milton Roy Spectronic 601 spectrometer, 1 cm path length,
3 ml cuvette) (2) and 6 ng (approximately 6 pl) of DNA was
diluted to 3 ml with buffer (20 mM NaCl, 2 mM HEPES,
10 uM EDTA, pH 7.4) in a glass cuvette stirred with a micro-
flea. Immediately prior to analysis, EthBr solution (3 pl,
0.5 mg/ml) was added to the stirring solution and allowed to
equilibrate for 10 min. Separately for each polyamine or
lipopolyamine (spermine, poly-L-lysine (average molecular
weight 9600 Da, PLL 9.6k), polyethylenimine (average
molecular weight 2000 Da, PEI 2K), N* N°-dioleoyl
spermine, Lipofectin, and Lipofectamine) aliquots (5 pl,
according to the ammonium/phosphate (+/—) charge ratio
required) were then added to the stirring solution and the
fluorescence measured after 1 min equilibration using
Perkin-Elmer LS 50B luminescent spectrometer (Aeycir = 260
nm and Aemiss = 600 nm with slit width 5 nm) while stirring
using an electronic stirrer (Rank Bros. Ltd.) (36). The total
polyamine solution added to the DNA solution did not
exceed 5% of the total volume of the solution, so no cor-
rection was made for sample dilution. The fluorescence was
expressed as the percentage of the maximum fluorescence
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when EthBr was bound to the DNA in the absence of
competition for binding and was corrected for background
fluorescence of free EthBr in solution.

Light Scattering Assay

DNA (60 pg, 60 pl of 1 mg/ml solution) was diluted to
3 ml with HEPES buffer (2 mM HEPES, 20 mM NaCl,
10 uM EDTA, pH 7.4) in a cuvette with a micro-flea, and the
concentration determined spectroscopically (Milton Roy
Spectronic 601 spectrometer, 1 cm path length, 3 ml cuvette).
Then aliquots (5 pl, according to the ammonium/phosphate
(+/—) charge ratio) of the tested polyamines were then added
to the stirring solution and the absorbance (light scattering)
at 320 nm was measured after 1 min stirring to allow the
mixture to reach equilibrium. The increase in absorbance due
to the scattered light was expressed as the percentage of rel-
ative maximum apparent absorbance (% rel. max. app. abs.)
due to light scattering of the bound polyamine with DNA.

Cell Culture and Transfection Experiments

Two cell lines were used in the transfection experiment,
a human primary skin fibroblast cells FEK4 (37) derived
from a foreskin explant and a human cervix carcinoma, HelLa
derivative and transformed cell line (HtTA). The HtTA cells
being stably transfected with a tetracycline-controlled trans-
activator (tTA) consisting of the tet repressor fused with the
activating domain of virion protein 16 of the herpes simplex
virus (HSV). Cells were cultured in Earle’s minimal essential
medium (EMEM) supplemented with foetal calf serum
(FCS) 15% in the case of FEK4 and 10% in the case of
HtTA cells, penicillin and streptomycin (50 TU/ml each),
glutamine (2 mM), and sodium bicarbonate (0.2%).

For the transfection (gene delivery) and the resultant
gene activity (transfection efficiency), FEK4 and HtTA cells
were seeded at 1 x 10° cell/well in 6 well plates in 4 ml EMEM
media with FCS for 24 h to reach a plate confluency of
50-60% on the day of transfection. The complex was prepared
by mixing 2 pg of pEGFP with the cationic liposomes or
lipopolyamine in Opti-MEM (serum free media, Gibco BRL)
according to the charge ratio at room temperature for 30 min
and then incubated with the cells for 4 h at 37°C in 5% CO,.
Then the cells were washed and cultured for further 44 h in
growth medium at 37°C in 5% CO, before the assay.

Levels of enhanced green fluorescent protein (EGFP
positive cells) in the transfected cells were detected and
corrected for background fluorescence of the control cells
using a fluorescence activated cell sorting (FACS) machine
(Becton Dickinson FACS Vantage dual Laser Instrument,
argon ion laser 488 nm). The transfection efficiency was
calculated based on the percentage of the cells that expressed
EGFP (positive cells) in the total number of cells.

Cytotoxicity (MTT) Assay of the Formed Lipoplexes

FEK4 and HtTA cells were seeded in 96 well plates at
8000 cell/well and incubated for 24 h at 37°C in 5% CO,.
N* N°-Dioleoyl spermine complexed with pEGFP was added
in the same way as the transfection protocol. After incubation
for 44 h, the media was replaced with 90 ul of fresh media and



976

10 pl of sterile filtered MTT solution (Sigma-Aldrich, UK)
(5 mg/ml) to reach a final concentration of 0.5 mg/ml. Then
the plates were incubated for a further 4 h at 37°C in an
atmosphere of 5% v/v CO,. After incubation, the media and
the unreacted dye were aspirated and the formed blue
formazan crystals were dissolved in 200 ul/well of dimethyl
sulfoxide (DMSO). The produced color was measured using
a plate-reader (VERSAmax) at wavelength 570 nm. The %
viability related to control wells containing cells without
DNA and/or polymer and is calculated by (test absorbance/
control absorbance) x 100 (38). The same protocol was
applied in case of the commercially available reagents
Lipofectin and Lipofectamine.

RESULTS
Synthesis of N*, N°-Dioleoyl Spermine

The synthesized N* N°-dioleoyl spermine (Fig. 3) was
homogenous on silica gel thin-layer chromatography and was
fully characterized by '"H-NMR (at 400 MHz) and "*C-NMR
and high-resolution accurate mass spectroscopy.

Ethidium Bromide Fluorescence Quenching Assay

Tostudy the ability of N*,N °-dioleoyl spermine to condense
calf thymus DNA and pEGFP as well as compared this effect
with the effect of different known polycations spermine, PLL
(39) and PEI (40) (Fig. 2) to condense DNA. Figure 4 shows
the ability of the studied polyamines to displace EthBr from
DNA. The binding ability was in the order PEI 2K > N* N°-
dioleoyl spermine > PLL 9.6K > spermine according to the
charge ratio. The charge ratio was calculated according to the
ammonium/phosphate (+/—) ratio for: spermine, 202.35 g/mole
with four nitrogen atoms that can be protonated; PLL 9.6K, one
positive charge/lysine monomer; N* N°-dioleoyl spermine, with
two positive charges. In the case of PEI 2K the charge ratio was
calculated as 25% of the amino groups in the polymer that can
be protonated, assuming that 43.1 g/mol is the repeating unit of
PEI that contains one nitrogen atom (41,42). It seems to be that
there is no agreement in the literature for the calculation of the
PEI/DNA ratio. Although it is calculated as PEI nitrogen/DNA
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Fig. 4. Plot of EthBr displacement assay of calf thymus DNA
complexed with PLL 9.6K, PEI 2K, N*N g—dioleoyl spermine, and
spermine.
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Fig. 5. Plot of EthBr displacement assay of calf thymus DNA com-
plexed with N* N°-dioleoyl spermine, Lipofectin, and Lipofectamine.

phosphate (40) not as charge ratio, it is reported that every third
atom of PEI polymer is a protonatable nitrogen (40), but one in
five of the protonatable nitrogens in PEI are protonated at pH
7 (43). However, Wagner (11) reported that one of every seven
nitrogens within PEI polymer is protonated at pH 7. The
polycations (PEI 2K and PLL 9.6K) are known for their ability
to condense DNA efficiently at a relatively low charge ratio
compared to spermine. On the other hand, the results revealed
that N* N°-dioleoyl spermine is able to condense DNA at a
lower charge ratio than PLL 9.6K and spermine (Fig. 4), and
produces a 50% fluorescence decrease at charge ratio 0.52.
Also, Fig. 5 shows DNA condensation ability of N* N°-dioleoyl
spermine in comparison with the commercially available, cationic
lipid, liposomal formulations Lipofectin and Lipofectamine. All
three cationic lipid formulations have the ability to condense
completely DNA through the displacement of EthBr leading to
fluorescence quenching. At lower charge ratios N* N°-dioleoyl
spermine has better ability to suppress the fluorescence than
Lipofectin and Lipofectamine. On studying the effect of N*,N°-
dioleoyl spermine on the type of DNA (calf thymus DNA, and
plasmid pEGFP), it was found that there is no significant
variation in the condensation ability of the studied
lipopolyamine on the type of DNA.

Light Scattering Assay

This experiment has been carried out to investigate the
condensation of DNA by polyamines and the formation of
particles (44). The apparent UV absorbance at 320 nm
(where there is no DNA absorbance above 300 nm) was
measured (28,45,46) showing light scattering. The results
from Fig. 6 indicated the formation of particles upon
interaction of spermine, PLL 9.6K and PEI 2K. In addition,
Fig. 7 shows that the light scattering due to particle formation
increases with the increase in the displaced EthBr and
reaches the maximum at approximately the same charge
ratio at which there is a maximum EthBr displacement,
although the concentration of DNA used in light scattering
experiments is ten times the concentration used in fluores-
cence quenching experiments which is related to the lack of
sensitivity of light scattering experiment in comparison with
fluorescence assay. Also, from light scattering results, there
is a decrease in the % relative maximal apparent absorbance
(% rel. max. app. abs.) after reaching the maximum absor-
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absorbance at A = 320 nm) of calf thymus DNA complexed with
PLL 9.6K, PEI 2K, N* N°-dioleoyl spermine and spermine.

bance, which could be attributed to the formation of poly-
amine-DNA aggregates as reported by Gosule and Schellman
(47).

Transfection Experiments

The transfection efficiency of pEGFP into FEK4 primary
cell line and the cancer HtTA cells was studied using N*,N°-
dioleoyl spermine and the commercially available reagents
(Lipofectin and Lipofectamine). The transfection results of
pEGFP into FEK4 indicated higher transfection ability of
N* N°-dioleoyl spermine (75%) and Lipofectamine (66%)
formulations over Lipofectin (18%); there is no significant
difference in the transfection activity between N* N°-dioleoyl
spermine and Lipofectamine (Fig. 8). On the other hand,
both N* N°-dioleoyl spermine and Lipofectamine formu-
lations show a similar transfection activity in HtTA cells
(about 70%), higher than Lipofectin (58%). N*N°-Dioleoyl
spermine transfects the cells best at charge ratio (+/—) 2.5
(5.54 pg/ml), Lipofectin at charge ratio 0.6 (5.0 ug/ml), while
Lipofectamine transfect both cell lines at charge ratio 3.7
(10.0 pg/ml).
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Fig. 7. Comparison of EthBr displacement and light scattering assays
of calf thymus DNA with N* N°-dioleoyl spermine.
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Fig. 8. Lipofection of FEK4 and HtTA cells transfected with pEGFP
complexed with N*,N°-dioleoyl spermine, Lipofectin or Lipofectamine
(at their respective N/P ratios for best transfection). The data represent
3 different experiments (3 replicates each) and the error bars represent
the standard deviation.

In Vitro Cytotoxicity

The cytotoxicity of N* N°-dioleoyl spermine was studied
in FEK4 and HtTA cells using MTT assay (48) (Fig. 9). The
ICsy (the concentration at which cell growth is inhibited by
50%) (42) values for the free polycation in FEK4 and HtTA
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S
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B
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Fig. 9. Viability of HtTA cells (above) and FEK4 primary skin cells
(below) after application of different concentrations of N*N°-
dioleoyl spermine either free or complexed with pEGFP.
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Fig. 10. Cytotoxicity effect of pEGFP (2 pg/ml) complexed with
either N*,N°-dioleoyl spermine (5.54 pg/ml), Lipofectin (5 pg/ml) or
Lipofectamine (10 pg/ml) in FEK4 and HtTA cells.

cells were 20.47 and 6.31 pg/ml respectively, and for the
lipoplex were 19.82 and 8.35 pg/ml respectively. The results
indicate that there is no significant difference in the toxic
effect (ICsp) of the free polycation over the lipoplex in
the case of HtTA cells and FEK4 cells for the studied li-
popolyamines. N*,N°-Dioleoyl spermine show a significant
difference in the % viability comparing to either Lipofectin
and Lipofectamine in the primary skin cell line FEK4, but
there is no difference in the case of the cancer cell line HtTA
(Fig. 10). These results also revealed that N*,N°-dioleoyl
spermine toxicity is higher (lower concentrations) in the case
of HtTA cells more than with the primary cell line FEK4
which could be attributed to the ease of transfection of
immortalized cancer cell lines over primary cell lines.

DISCUSSION

Non-viral delivery systems can be defined to include the
use of plasmid DNA alone (so-called naked DNA) (49,50) as
well as DNA complexed to synthetic carriers such as cationic
lipids (51-54) or polymers (55). The use of an efficient carrier
for nucleic acid delivery is considered to be a determinant
factor for the successful application of gene therapy (56).
This carrier is responsible for the complex process of gene
delivery to the nucleus (57).

Ethidium bromide (EthBr) (2,7-diamino-10-ethyl-9-phe-
nylphenanthridinium bromide, Fig. 11) is a cationic dye that
displays a marked increase in the fluorescence upon binding
with DNA and RNA through the intercalation between the
EthBr phenanthridinium-moiety and adjacent base-pairs of
DNA sequences (36,58). Within the prerequisites for delivery
of DNA across intact cytoplasmic membrane are condensa-
tion and masking the negative charge of the phosphate
backbone. Condensation of DNA occurs when about 90%
of the charge on DNA is neutralized (16,47).

The ability of the cationic lipid N*,N°-dioleoyl spermine
to compact DNA more efficiently than both spermine and
the powerful condensing agent PLL a cationic polymer (9),
(Fig. 4) shows the importance of the lipid moiety we have
bound to the cationic polyamine in order to achieve
improvements in its ability to condense DNA, cellular
entry, and lowering the toxicity of the polyamine conjugate
(11,59,60).
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The formation of N* N°-dioleoyl spermine-DNA
lipoplex at lower charge ratio decreases the toxicity of
the DNA delivering lipopolyamine. As the mammalian
cell membrane is a semipermeable membrane formed
of phospholipids bilayer that allows the transport of
macromolecules by endocytosis, neutralization of the
negative charges on the DNA by polycations will improve
the delivery of DNA through the cell membrane because of
the presence of negative charges on both DNA and cell
membrane. Also, the positively charged lipid complex will
mediate transfection by fusion with cell membranes (60,61).
It was found that both the number of positive charges and
their distribution on the surface of the molecule have
profound effects on DNA condensation (28,62,63).

In addition, in a study on the transfection activity of
cholesterol carbamate cationic lipids (28), Blagbrough and
co-workers reported that the carbamate with a spermine
polyamine moiety has the highest transfection activity with
its ability to condense DNA efficiently. Our findings are in
agreement with the literature, the cationic liposomal formu-
lation Lipofectin, with its cationic moiety DOTMA contain-
ing one positively charged quaternary ammonium group, has
lower ability to displace the EthBr from DNA than Lip-
ofectamine formulation that contains DOSPA (Fig. 2) with
its four positively charged nitrogens (15) and N*,N°-dioleoyl
spermine with its two positively charged nitrogens. The
higher ability of N*N°-dioleoyl spermine (two positive
charges) over Lipofectamine (four positive charges) in
DNA condensation, though N*N°-dioleoyl spermine has
a lower number of positive charges/molecule, may be
attributed to the distribution of the positive charges on the
molecule allowing a higher affinity of the vector for DNA
and leading to the efficient displacement of EthBr. Another
variable is the liposomal formulation of Lipofectamine
compared to the non-liposomal formulation of N*N°-
dioleoyl spermine.

The helper lipid DOPE which is the second component
of the cationic liposomes is used to increase the transfection
activity of the cationic liposome through its ability to
destabilize lipid bilayers leading to endosomal destabilization
with subsequent increase in the total cellular uptake of the
delivered DNA (23,64). Lipospermines (Fig. 2) with their
cationic headgroup sometimes form micelles (in the absence
of DNA) rather than the bilayer produced by the small
cationic quaternary ammonium headgroup of DOTMA (Lip-
ofectin formulation) (43,65). N* N°-Dioleoyl spermine
combines in its structure the two oleoyl chains that have the
characteristics of the fusogenic lipid DOPE and the cationic
polyamine spermine (Fig. 2). Thus, DNA is condensed by the

Fig. 11. Structure of ethidium bromide.
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two primary amines and coated by the dioleoyl lipophilic
moiety. The DNA condensation results of N* N°-dioleoyl
spermine (Fig. 5) show a higher efficiency than either li-
posomal formulation. The transfection results reveal higher
transfection ability (levels of expression) of N* N°-dioleoyl
spermine compared to Lipofectin (Fig. 8) in FEK4 and HtTA
cells. These results indicate the roles of both number
and distribution of positive charges along the polyamine
backbone on the ability of the compound to condense DNA.
On the other hand, there is no significant difference in the
transfection activity between N*N°-dioleoyl spermine and
Lipofectamine in both FEK4 and HtTA cell lines, which
indicates the importance of lipid coating over the DNA
molecule on both the condensation and cellular delivery of
DNA in case of the liposomal and non liposomal formu-
lations (65). N*,N°-Dioleoyl spermine achieved high levels
of transfection in both a cancer cell line and a primary skin
cell line (73%), which indicates the ability of this vector to
deliver DNA. Cell viability results revealed improved FEK4
viability more than the cancer cells HtTA (Fig. 9). Also,
N*N°-dioleoyl spermine showed a significant improvement
in primary FEK4 cell viability over the liposomal formu-
latios (Fig. 10), but no significant difference in HtTA cells.
Previous studies on Lipofectin and Lipofectamine on
different cell lines showed the cytotoxic effects of these
liposomal formulations (66-70). In conclusion, a lipo-
polyamine vector has been developed for DNA delivery.
This new non-liposomal formulation has the ability to trans-
fect primary skin cells more efficiently than the commercially
available liposomal Lipofectin formulation.
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